Pudendal Nerve Latency Time in Normal Women via Intravaginal Stimulation

Geraldo A. Cavalcanti, Gilberto M. Manzano, Lydia M. Giuliano, Joao A. Nobrega, Miguel Srougi, Homero Bruschini

Departments of Urology and Neurology, Federal University of Sao Paulo, UNIFESP, Paulista School of Medicine, Sao Paulo, SP, Brazil

ABSTRACT

Introduction & Objectives: Studies of motor conduction for the efferent functional assessment of the pudendal nerve in women with pelvic dysfunctions have been conducted through researching distal motor latency times. The transrectal approach has been the classic approach for this electrophysiological examination. The objective of the present study is to verify the viability of the transvaginal approach in performing the exam, to establish normal values for this method and to analyze the influence of age, stature and parity in the latency value of normal women.

Materials and Methods: A total of 23 volunteers without genitourinary pathologies participated in this study. In each, pudendal motor latency was investigated through the transvaginal approach, which was chosen due to patient’s higher tolerance levels.

Results: The motor response represented by registering the M-wave was obtained in all volunteers on the right side (100%) and in 13 volunteers on the left side (56.5%). The mean motor latency obtained in the right and left was respectively: 1.99 ± 0.41 and 1.92 ± 0.48 milliseconds (ms). There was no difference between the sides (p = 0.66). Latency did not correlate with age, stature or obstetric history. The results obtained in the present study were in agreement with those found by other researchers using the transrectal approach.

Conclusion: The vaginal approach represents an alternative for pudendal nerve distal motor latency time, with similar results to those achieved through the transrectal approach. Normative values obtained herein might serve as a comparative basis for subsequent physiopathological studies.

Key words: electrodiagnosis; pelvic floor; urinary incontinence; perineum; neurophysiology

INTRODUCTION

Somatic innervation of the female pelvic floor is basically represented by the pudendal nerve. The integrity of this nerve is important for the functioning of the skeletal musculature of this region, part of the mechanism that sustains pelvic structures and for anal and urethral sphincteric activity (1). This nerve is characterized by presenting sensitive and motor fibers derived from the medullar segments S2-S4. Its inferior rectal and perineal ramifications play an important role in external anal and urethra sphincter innervations respectively (2).

Efferent functional neurological analysis is performed through measurement of motor conduction speed. This method requires access to 2 separate points of the same nerve for stimulation and registration, making its application on the pelvic floor difficult (3).
Thus, research on distal motor latency described by Kiff & Swash (4) became an alternative in the propedeutic of abnormalities of pudendal nerve motor function. The advantage lies in the need to stimulate only one point of the nerve. Registration can be made in the anal sphincteric musculature corresponding to the compound muscular potential of action or M-wave. These researchers also developed the St. Mark’s pudendal electrode – a name given in honor of the institution where they worked (St. Mark’s Hospital, London, UK). This is a self-adhesive electrode placed on the researcher’s index finger at a fixed distance of 3 cm with bipolar electrodes for stimulation and registration places at the tip and base of the finger respectively (Figure-1). This method is used to investigate lesions of the pudendal nerve associated with dysfunctions in the pelvic floor. Patients with a previous history of obstetric rupture of the anal sphincter presented a higher risk of fecal incontinence when pudendal motor latency was higher than 2 milliseconds (ms) (5). A study in nulliparous patients and in the puerperium showed an extension of latency in the latter persisting for 5 years after vaginal delivery (6). A similar finding was found in women with stress urinary incontinence and concomitant genital prolapse (7). All these studies were conducted through stimulation and transrectal registration. A single previous study comparing the transrectal and transvaginal stimulation routes in the same normal volunteers showed the same findings (8). The present consensus suggests that the transvaginal approach is effective and useful (9), and it has the advantage of allowing greater tolerability by women due to their familiarization with regular gynecological exams.

MATERIALS AND METHODS

Following approval by the institution’s Ethics Committee, a prospective study was performed on 23 normal volunteers. Their characteristics are described in Table-1. Women without significant genitourinary alterations were included, providing no previous history of extensive pelvic and vaginal surgery (including women who had already undergone cesareans or unilateral adnexal surgery), diabetes mellitus, renal insufficiency, alcoholism, hyperthyroidism, present and previous neurological alterations, interstitial cystitis, present urinary infection, voiding dysfunctions, pregnancy or use of a cardiac pacemaker.

Table 1 – Characteristics of the sample in relation to age, corporeal weight, stature and parity (mean ± standard deviation).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Stature (cm)</th>
<th>Vaginal Delivery</th>
<th>Total Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>34.8 ± 13.7</td>
<td>159 ± 7</td>
<td>1.23 ± 1.01</td>
</tr>
<tr>
<td>Interval</td>
<td>18-74</td>
<td>140-160</td>
<td>0-3</td>
</tr>
<tr>
<td>Number of Cases</td>
<td>23</td>
<td>23</td>
<td>14</td>
</tr>
</tbody>
</table>
Four channel Nihon-Kohden electroneuromyography equipment, model Neuropack sigma (Σ), was used to perform the examination.

The study was conducted with the volunteer in the lithotomy position. The St. Mark’s pudendal electrode (Medtronic Functional Diagnostics A/S, Skovlunde, Denmark, model 13L4401) was attached to the researcher’s index finger (Figure-1). In the 14 initial volunteers, the bilateral research was performed only with the right hand of a right-handed researcher. In the last 9 patients, we used the index finger of each hand for the corresponding sides. The identification of the stimulation position was determined in each case, moving the electrode from the tip of the finger until a response with maximum amplitude be reached, using the ischial tuberosity as reference. Stimulation for a duration of 0.2 milliseconds (ms) was performed, and the intensity was increased until reaching the supramaximal response (above which intensity variations do not promote amplitude alterations in the bulbocavernous muscle). Answers were registered using filters of between 20 Hertz (Hz) and 10 KiloHertz (KHz) for low and high frequency, respectively. We started from an initial sensitivity of 50 microvolts per division (µV/div) and adjusted it as necessary. We used a base time of 50 ms (5 ms/div). The value of the latency was determined in the moment of starting the muscular depolarization wave deflection or wave -M began.

To compare both side latencies, the t-Student test was used for paired samples. The correlation between the latency value with the age and stature of the volunteers was calculated through Pearson’s r coefficient. The same analysis was performed in relation to obstetric history (parity and number of vaginal deliveries) by using the Spearman’s r coefficient. For all statistical analysis, a 5% significance level (p = 0.05) was adopted.

RESULTS

The exam was well tolerated by the volunteers, who did not report any alterations or discomfort that persisted after its conduction. Registrations of both sides presented the M-wave of the same signal when obtained with the same hand, and inverse signals when each side was approached by fingers from opposite hands (Figure-2). In performing the exam, the M-wave was obtained in all 14 cases on the right side and in 8 (57.1%) on the left side when the same hands were used for both sides. In the last 9 patients, the M-wave was obtained in all volunteers on the right side and in 5 (55.6%) on the left side when fingers of each hand were used for the corresponding sides.

Mean latency time obtained on the right and left sides was, respectively, 1.99 ± 0.41 (1.00 - 2.40) and 1.92 ± 0.48 (1.00 - 2.60) milliseconds (ms). There was no difference between latency values obtained on both sides (p = 0.66). There was no correlation of the motor latency of each side with age, stature and obstetric history (Table-2).

The average of the latencies obtained was compared to the values described in the literature for the transrectal approach. The results are showed as floating bars, and the distance between the lateral extremities represents the values of the arithmetic mean of each study added and subtracted from 2 corresponding standard errors. The findings of the present study are in agreement with previously published data (Figure-3).

Figure 2 – Registrations of the M-wave. Superior and inferior traces were obtained, respectively on the right and left. They present inverted signals due to the opposed functions performed by the bipolar registration electrodes (active and reference) when we utilize each hand on its corresponding side.
The present study aimed to establish the applicability of the vaginal approach for the research of pudendal nerve distal motor latency times in normal women. The results achieved were compared with those obtained in other studies through the rectal approach. As well, an analysis was made of the impact

Table 2 – Correlation between the latency value on each side, the general characteristics, such as age (years), stature (cm), parity (number of deliveries) and the number of vaginal deliveries.

<table>
<thead>
<tr>
<th></th>
<th>Right distal motor latency</th>
<th>Left distal motor latency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age**</td>
<td>Stature**</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>p Value</td>
</tr>
<tr>
<td>Age</td>
<td>0.11</td>
<td>0.60</td>
</tr>
<tr>
<td>Stature</td>
<td>0.26</td>
<td>0.37</td>
</tr>
</tbody>
</table>

* Spearman’s r, ** Pearson’s r

COMMENTS

The present study aimed to establish the applicability of the vaginal approach for the research of pudendal nerve distal motor latency times in normal women. The results achieved were compared with those obtained in other studies through the rectal approach. As well, an analysis was made of the impact

Figure 3 – Pudendal nerve distal motor latency value, corresponding to the arithmetic mean added and subtracted of 2 standard errors in the present study and in comparable literature studies. Ref. 10 = 51 women via transrectal approach; ref. 13 = 57 women via transrectal approach; ref. 18 = 20 women via transrectal approach; ref 19 = 20 women via transrectal approach.
of physiological factors, such as age, stature and par-ity. Despite potential advantages in some aspects util-
izing needle EMG, this comparison was not our ob-
jective. The St. Mark’s electrode was incorporated
for clinical studies due to the facility and trustwor-
thiness of its results and its intravaginal use aims at
making it even more practical and tolerable.

The sample size of 23 patients in our study
corresponded to the values of the studies utilized for
comparison of viability found in the literature. They
declare a universal difficulty in obtaining normal
volunteers for studies of this nature, which is a prob-
able reason for the lack of assessments in larger popu-
lations. The definition of the sample through well
defined inclusion and exclusion criteria allowed the
determination of values of this electrophysiological
exam in a group consisting of women of different ages
and obstetric histories, even though presenting no
urogenital alterations.

We could not find differences regarding age
and corporeal stature in pudendal motor conduction.
There is no consensus in the literature regarding the
interference of these factors. Jameson et al. (10) have
described an extension of pudendal nerve distal mo-
tor latency that comes with aging – both in men and
women without anorectal alterations. The same be-
havior in men suggest that other variables such as
menopause, potentially related with age, did not in-
terfere in the value of latency in women (11). Similar
results were also observed when groups of men and
women below 50 years of age were compared (12).
However, other researchers did not confirm the in-
fluence of age and stature in motor latency using the
transrectal approach (13, 14). The present work cor-
rhorobates the absence of such differences, demonstrat-
ing that there are no electrophysiological alterations
with aging and stature. There is no description in the
literature of transvaginal studies similar to this.

Consequences of vaginal delivery and parity
in the neurological integrity of the pelvic floor have
been a reason for interest and studies. Alterations in
pudendal motor latency could already be observed
after delivery both in primiparous and multiparous
women (13). It is probable that vaginal delivery oc-
currences can cause transitory neurogenic altera-
tions in the pelvic musculature. However, since vaginal
deliveries have not occurred recently, immediate re-
percussions were not found. According to Wall (15),
other associated factors such as the use of forceps,
extended expulsive periods during labor, significant
perineal ruptures and fetal macrosomia seem to be
necessary so that the compromise of pudendal inner-
vations is permanent with definitive abnormalities in
neurophysiologic tests and clinical repercussion in
the inferior and genital urinary tract.

The utilization of the St. Mark’s pudendal
electrode for stimulation and registration of puden-
dal nerve distal motor latency has shown to be effec-
tive in obtaining a clean and distinctive answer, which
favors standardizing the method. Since it is a study
of conduction speed, it assesses only the faster con-
duction nervous fibers, and thus it is not a good indi-
cator for muscular denervation (16). The amplitude
of the answer theoretically reflects the number of
excitable motor units and would be a more adequate
parameter than latency to identify peripheral neuro-
logical lesions. However, its variability with techni-
cal and biological factors makes its practical use dif-
ficult (10). We should also bear in mind that even
though there is a delay in nervous conduction, it is
improbable that a pathological effect that would af-
fect the nerve would be sufficient to instigate an in-
crease in the latency value in 1 ms, and that this would
be able to influence the time of the reflex answer of
motor units (3).

However, contrary to what occurs in patholo-
gies of members, generally when the main nerve trunk
is involved neurogenic lesions in the pelvic floor are
preferably localized in the distal portion next to the
muscle (16). This aspect permits that, despite the limi-
tations of motor conduction conventional studies,
pudendal nerve distal motor latency time can detect
abnormalities in perineal terminal innervations.

The majority of the authors have approached
the pudendal nerve transrectally. The anal sphincter
represents a muscular structure suitable as a registra-
tion site due both to its external and distal to stimula-
tion, as well as the sufficient quantity of muscle fi-
bers for obtaining an adequate response. Differently
from the classic approach, the present study used the
transvaginal approach for stimulation and registra-
tion, since this approach offers better acceptance and

comfort for the woman, who is familiar to periodic gynecological exams. Stimulation and registration could be performed in an efficient way on the right side (using the right hand of a right-handed researcher). However, registration on the left side was not obtained consistently in a significant number of cases (43.5%), as well as the need for a higher intensity of stimulation to obtain a supramaximal registration. The obtainment of a response on the left side was insufficient, both with the efforts on both sides with the same hand and with corresponding hands. Difficulties in positioning the registration electrodes in contact with the bulbocavernosus muscle during the research conducted on the left side seems to be the most probable cause of the differences in findings. This means that in left-handed observers the tendency could be reversed. According to Lefaucheur et al. (12), artifacts and signal distortions could occur with the introduction of the finger and attempt to adequately locate the stimulation point. The research of the pudendal motor latency time with the index fingers of both hands caused different signal registrations due to the opposing function performed by bipolar registration electrodes (active and reference).

The latency value did not present any difference between both sides. This was a different result from other researchers that have identified a tendency in obtaining more prolonged left pudendal latency (12). The bilateral approach, even though recommended for the identification of unilateral neuropathies with possible clinical relevance (17), is limited in this method due to the irregularity in obtaining registration on both sides in normal volunteers.

The findings in the present study agree with the results reported in the literature concerning the latencies obtained through the transrectal approach in normal women (10,13,18,19). This suggests that, in clinical practice, the values obtained can be interpreted independently from the approach used and represent pudendal nerve distal motor conduction since the anal sphincter and the bulbocavernosus muscle are supplied by fibers of similar diameter and the distance between the site of stimulation and registration do not change—a fact that is confirmed by the observations of Tetzschner et al. (8). For the same reason, the results shall present variations in relation to gender.

This examination can represent a favorable beginning of a more encompassing study to verify the neurological integrity of the pelvic floor involving other electrophysiological methods, such as motor conduction studies, function and sensitive conduction (research of electric limits and evoked potentials) and research of sacral reflexes (20), making the investigation broader and more precise.

This study allowed familiarization with the neurophysiologic technique described, and correlates the results with some important variables. Our findings in volunteers without urinary symptoms add up to the few number of cases existing on normal values in asymptomatic people, allowing future comparison with patients that present voiding dysfunctions.

CONCLUSIONS

The vaginal approach has proved to be an alternative to the classical transrectal approach for the evaluation of pudendal nerve distal motor latency time, by using the St. Mark’s electrode. Aging, stature and parity did not interfere in the latency value. The values of normality obtained herein for this method might serve as a comparative basis for subsequent physiopathological studies.

ACKNOWLEDGEMENTS

Research partially financed by FAPESP (State of São Paulo Research Foundation), process #99/11546-5.

CONFLICT OF INTEREST

None declared.

REFERENCES

Accepted after revision: April 5, 2006

Correspondence address:
Dr. Homero Bruschini
Rua Barata Ribeiro, 414 / 35
São Paulo, SP, 01308-000, Brazil
Fax: + 55 11 3218-8283.
E-mail: bruschini@uol.com.br
EDITORIAL COMMENT

Pudendal nerve distal motor latency time registration appeared as a promising alternative in the neurofunctional assessment of the pelvic floor, since the measurement of the speed of nervous motor conduction is not applicable in this region. The development of the St. Mark’s electrode has made the application of this neurophysiological test easier.

In most centers, the research of pudendal distal motor latency time is made through the transrectal approach. In the present study, the authors prospectively assess the use of the vaginal approach for this neurophysical registration in normal women. It is worth mentioning the difficulty of conducting a study in normal patients. Yet despite the justifications presented by the researchers regarding the discomfort reported by the patients when undergoing the transrectal approach, both approaches (vaginal and rectal) have not been compared in the same patient, revealing a point of uncertainty about the method and, as a result, in analysis of the results. This demonstrates the importance of demonstrating the viability of executing pudendal nerve distal motor latency research through the vaginal approach, as well as its normal reference values.

There are a considerable number of publications establishing pudendal distal motor latency values in patients with stress urinary incontinence, pelvic prolapse and its variations by age, biotype and previous surgeries (1,2). However, there is still no consensus regarding the validity of this assessment value since there is a great variation in its specificity, sensibility and reproducibility. An example of this is the decision of the American Gastroenterological Association recommending the use of the pudendal distal motor latency registration in the assessment of people with fecal incontinence (3). Its practical application in female urology and other voiding dysfunctions lacks complementary studies.

REFERENCES

Dr. Jose Carlos Truzzi
Urology Department
University of Santo Amaro, UNISA
São Paulo, SP, Brazil
E-mail: jctruzzi@hotmail.com