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ABSTRACT

Oxidative stress (OS) in the reproductive tract is now a real entity and concern due to the potential harmful effects of high
levels of reactive oxygen species (ROS) on sperm number, motility, quality, and function including damage to sperm nuclear
DNA. Evaluation of OS related damage to non-functional sperm is highly relevant as intracytoplasmic sperm injection (ICSI)
technique, an effective therapy for severe male factor infertility, bypasses the majority of reproductive tract deficiencies.
Despite the controversial findings in the existing literature, there is now enough evidence to show that sperm DNA damage
is detrimental to reproductive outcomes. In addition, spermatozoa of infertile men are suggested to carry more DNA damage
than do the spermatozoa from fertile men. Besides impairment of fertility such damage is likely to increase the transmission
of genetic diseases during the assisted reproductive procedures. Standardization of protocols to assess reactive oxygen
species and DNA damage is very important in introducing these tests in such clinical practice. Thus evaluation of seminal
ROS levels and extent of sperm DNA damage especially in an infertile male may help develop new therapeutic strategies and
improve success of assisted reproductive techniques (ART).
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INTRODUCTION

A large population of apparently normal males
have problem impregnating their partners even when
their fertility status by routine semen analysis is
considered normal. These cases are classified as
idiopathic infertility. Men with idiopathic infertility
generally present with significantly higher seminal
ROS levels and lower antioxidant potential than
healthy fertile controls (1). In addition, high ROS levels

have been detected in the semen samples of 25% to
40% of infertile men (2,3).

In the context of human reproduction, a
balance called oxidative stress status (OSS) normally
exists between ROS production and antioxidant
scavenging system in the male reproductive tract (4).
Small physiological levels of ROS are essential for
the regulation of normal sperm functions such as sperm
capacitation, the acrosome reaction, and sperm-oocyte
fusion (5,6). However, production of excessive
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amounts of ROS in semen especially during
leukocytospermia can overwhelm the antioxidant
defense mechanisms of spermatozoa and seminal
plasma resulting in oxidative stress. Studies suggest
that ROS attack the integrity of DNA in the sperm
nucleus by causing base modifications, DNA strand
breaks, and chromatin cross-linking (7,8).
Spermatozoa have limited defense mechanisms against
oxidative attack on their DNA mainly due to the
complex packaging arrangement of DNA. In vivo,
such damage may not be the cause for concern
because the collective peroxidative damage to the
sperm membrane ensures that spermatozoa
susceptible to oxidative stress are unable to participate
in the fertilization process. However, these safeguards
are circumvented during the course of ICSI and some
spermatozoa with significant DNA fragmentation may
be used that will produce adverse unfavorable results.

The assessment of sperm DNA damage
appears to be a potential tool for evaluating semen
samples prior to their use in ART. Testing DNA integrity
may help andrologists to select spermatozoa with intact
DNA or with the least amount of DNA damage for
use in assisted reproduction possibly increasing the
success rate. In addition, interest in the physiologic and
pathologic effects of ROS on male fertility is growing.
Therefore, it is essential for urologists and fertility
specialists to understand free radical sources, their
generation, sperm damage mechanisms that may affect
male reproductive system. In addition, it has been
postulated that protective agents against ROS e.g.,
antioxidants, may be useful for treating male factor
infertility. For this reason, deciphering the levels and
sources of excessive ROS production in human semen
may be useful in developing therapeutic strategies for
use in male infertility uses.

This article will discuss in detail about the
clinical relevance of oxidative stress in human semen,
how excessive ROS damages sperm nuclear DNA
as well as how such DNA damage contributes to male
infertility and assisted reproductive techniques.

Design: A thorough literature survey was
performed using the Medline, EMBASE, BIOSIS and
Cochrane databases. We restricted the survey to
clinical publications between 1985 and 2006 that were
relevant to male infertility with emphasis on oxidative
stress and DNA damage.

WHAT ARE REACTIVE OXYGEN SPECIES
AND OXIDATIVE STRESS?

Reactive oxygen species (ROS) known as free
radicals are oxidizing agents generated as a result of
metabolism of oxygen and have at least one unpaired
electron that make them very reactive species.
Normally, free radicals attack the nearest stable
molecule, which becomes a free radical itself, beginning
a cascade of chain reaction. These can very rapidly
oxidize biomolecules that they encounter in their vicinity
thus exerting either a positive or a negative influence
on normal cell function (9).

Normal aerobic metabolism is related to
optimal levels of ROS because a balance exists
between ROS production and antioxidants activity.
Oxidative stress (OS) is the term applied when oxidants
outnumber the antioxidants due to excessive generation
of reactive oxygen species and when antioxidants
cannot scavenge these free radicals (10). Such
phenomena cause pathological effects, damaging cells,
tissues and organs (11).

REACTIVE OXYGEN SPECIES AND
SEMINAL OXIDATIVE STRESS

Spermatozoa produce small amounts of ROS
that play a significant role in many of the sperm
physiological processes such as capacitation,
hyperactivation, and sperm-oocyte fusion (12,13).
However, ROS must be continuously inactivated to
keep only a small amount necessary to maintain normal
cell function. Excessive generation of ROS in semen
can cause damage to spermatozoa due to its exclusive
structural composition. During the maturation process
the spermatozoa extrudes cytoplasm, which is the
major source of antioxidants. Once this process is
slowed down, residual cytoplasm forms a cytoplasmic
droplet in the sperm mid region. These spermatozoa
carrying cytoplasmic droplets are though to be
immature and functionally defective (14). The residual
cytoplasm contains high concentration of certain
cytoplasmic enzymes (G6PDH, SOD), which are also
a source of ROS (15). Lack of cytoplasm results in
decreased antioxidant defense. This process is the link
between poor sperm quality and elevated ROS.
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Human ejaculate consists of different types of
cells such as mature and immature spermatozoa, round
cells from different stages of the spermatogenic process,
leukocytes and epithelial cells. Of these, peroxidase-
positive leukocytes and abnormal spermatozoa that
produce free radicals continuously (16,17). Spermatozoa
are also particularly susceptible to the damage induced
by excessive ROS because their plasma membranes
contain large quantities of polyunsaturated fatty acids
(PUFA), which readily experience lipid peroxidation by
ROS, resulting in a loss of membrane integrity (18,19).
There are two major systems of ROS production in

sperm. One is the nicotinamide adenine dinucleotide-
dependent oxidase system at the level of the sperm
plasma membrane and the other is NADH-dependent
oxido-reductase (diphorase) system at the mitochondrial
level (20). There is a strong positive correlation between
immature spermatozoa and ROS production, which in
turn is negatively correlated with sperm quality (21).
Furthermore, it has been noticed that as the
concentration of immature spermatozoa in the human
ejaculate increases, the concentration of mature
spermatozoa with damaged DNA rises (22) (Figure-
1).

Figure 1 –  Association of increasing reactive oxygen species (ROS) production with infertility.
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OXIDATIVE STRESS AND EFFECT ON
SPERM MOTILITY

Seminal ROS levels, when present in excess,
possess potentially toxic effects on both sperm quality
and function (23,24). Elevated seminal ROS production
has been associated with decreased sperm motility,
defective acrosome reaction, and loss of fertility (25).
Sperm cell dysfunction, a result of ROS damage, is
dependent on the nature, amount, and duration of
exposure to ROS. The extent of ROS damage is also
dependent upon surrounding environmental factors
such as oxygen tension and temperature as well as
the concentrations of molecular components such as
ions, proteins, and ROS scavengers (5).

As reported by Aitken et al., low hydrogen
peroxide concentrations do not influence sperm motility,
but do suppress human sperm competence during
oocyte fusion (26). Possibly ROS levels are not high
enough to affect standard seminal parameters but can
cause defects in other processes that are required for
fertilization, such as sperm-oocyte interaction. These
findings suggest an explanation why patients with
normal semen parameters can experience idiopathic
infertility. Decreased motility is a result of cascade of
events including lipid peroxidation (LPO) of sperm
plasma membrane that ultimately affect an axonemal
protein phosphorylation and sperm immobilization (2).

CLINICAL DIAGNOSIS AND ASSESSMENT
OF SEMINAL OXIDATIVE STRESS

Spinal Cord Injury
Recent studies report the detection of

increased ROS levels in the semen of 25% to 40% of
infertile men (2,3). Padron et al. documented that in
men with spinal cord injury, elevated seminal ROS
levels are associated with poor sperm motility and
morphology. These associations are independent of
both ejaculation method and specimen type (3).

Varicocele
The role of ROS in varicocele has been

previous reported by our center and others (17,27,28).
Excessive nitric oxide release within dilated spermatic

veins has been identified in subfertile males with
varicocele. This nitric oxide release may cause
spermatozoal dysfunction (27,29). Allamaneni et al.
report a positive correlation between seminal ROS
levels and varicocele grade in which significantly
higher levels of seminal ROS are seen in men with
varicocele grades 2 and 3 versus men with varicocele
grade 1 (30). Varicocele patients also present low
seminal plasma TAC levels and increase 8-hydroxy-
2’-deoxyguanosine levels, indicating a deficient pro-
oxidant defense system and oxidative DNA damage,
respectively (17,31). According to a recent meta-
analysis, varicocele patients as compared with normal
sperm donors have significantly increased oxidative
stress parameters such as ROS and lipid peroxidation
as well as significantly decreased antioxidant
concentrations (32). Antioxidant supplementation may
therefore be beneficial to this infertile population with
varicocele.

Mostafa et al. first reported that
varicocelectomy reduces the seminal plasma ROS
levels of infertile men associated with increased seminal
plasma concentrations of antioxidants such as
superoxide dismutase, catalase, glutathione peroxidase
and vitamin E of infertile men (33). Daitch et al. reported
that couples who do not achieve pregnancy following
varicocelectomy might significantly increase their
pregnancy and live birth rates after undergoing
intrauterine insemination, despite failing to show
improvements in semen parameters (34). It is therefore
suggested that pregnancy rate improvement following
varicocelectomy may be due to functional factors such
as seminal oxidative stress and the spermatozoal DNA
integrity not routinely tested during standard semen
analysis (34).

Leukocytospermia
ROS in the human ejaculate originate mainly

from seminal leukocytes. Leukocytospermia is
characterized by abnormally high seminal leukocyte,
polymorphonuclear neutrophils, and macrophages
(35). Seminal leukocyte ROS production induces
spermatozoal damage during ART procedures (1,36).
Patients with accessory gland infection demonstrate
both leukocytospermia and elevated ROS levels (37).
In these patients, sperm function defects are resultant
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of abnormal lipid peroxidation, stimulated by the high
ROS levels (38).

Genito-Urinary (GU) Tract Infection
During GU infection, the presence of

leukocytes in semen has been associated with
decreased sperm motility and fertilization capacity (39-
41). However, El-Demiry et al. reported no association
between standard seminal parameters and leukocyte
concentration in human semen (42). This dilemma may
be partially due to the different techniques used to
determine leukocyte concentration in semen as well
as the lack of agreement on the lower leukocyte
concentration responsible for sperm damage (43-45).
Infections located in the testis and epididymis produce
ROS that are particularly harmful to spermatozoa due
to its lack of a pro-oxidant defense system. Sperm
function may also be indirectly affected by an infection
stimulating the presence of ROS in the prostate gland,
and seminal vesicles. An association between
prostatitis and male infertility has been reported, but
the responsible mechanism is still poorly understood
(46). Prostatitis is associated with the presence of
granulocytes in prostatic fluid. Irrespective of
leukocytospermia status, increased seminal oxidative
stress is reported in men with chronic prostatitis and
prostatodynia (46). Such findings support the
controversial prostatitis-infertility relationship debate.
Multiple hypotheses discuss male genital tract
infections and their relationship with ROS. Specifically,
the leukocytes stimulate human spermatozoa to
produce ROS. The mechanisms responsible for such
stimulation are unknown, but may include the direct
contact of sperm and leukocytes or may be regulated
by leukocyte release of soluble products (1,47).

Environmental Factors
An association between cigarette smoking and

reduced seminal quality has been identified (48).
Harmful substances including alkaloids, nitrosamines,
nicotine, cotinine and hydroxycotinine are present in
cigarettes and produce free radicals (49). In a
prospective study, Saleh et al. compared infertile men
who smoked cigarettes with nonsmoker infertile men
(50). Smoking was associated with a significant increase
(approximately 48%) in seminal leukocyte

concentrations, a 107% ROS level increase, and a 10
point decrease in ROS-TAC score. The authors
concluded that infertile men who smoke cigarettes
present higher seminal OS levels than infertile
nonsmokers, possibly due to significant increase in
leukocyte concentration in their semen. An earlier study
also reported an association between cigarette smoking
in infertile men and increased leukocyte infiltration in
the semen (51). Significantly higher levels of DNA
strand breaks in men who smoke have also been
identified. DNA strand breaks may be resultant from
the presence of carcinogens and mutagens in cigarette
smoke (52). In recent decades evidence suggestive of
the harmful effects of occupational exposure chemicals
known as endocrine disruptors on the reproductive
system has gradually accumulated (53). Environmental
pollution is a major source of ROS production and has
been implicated in the pathogenesis of poor sperm quality
(54). In a study conducted by De Rosa et al., tollgate
workers with continuous environmental pollutant
exposure had inversely correlated blood
methaemoglobin and lead levels to sperm parameters
in comparison to local male inhabitants not exposed to
comparable automobile pollution levels. These findings
suggest that nitrogen oxide and lead, both present in
the composition of automobile exhaust, adversely affect
semen quality (55). In addition, the increase of
industrialization has resulted in an elevated deposition
of highly toxic heavy metals into the atmosphere.
Paternal exposure to heavy metals such as lead, arsenic
and mercury is associated with decreased fertility and
pregnancy delay according to recent studies (56,57).
Oxidative stress is hypothesized to play an important
role in the development and progression of adverse
health effects due to such environmental exposure (58).

FREE RADICALS AND ASSISTED
REPRODUCTIVE TECHNIQUES (ART)

Numerous conditions associated with male
infertility, e.g., microdeletions of the Y chromosome,
sperm maturational arrest, meiotic defects,
aneuploidies, defective centromeres and defects in
oocyte activation still lack a specific treatment.
However, advances in ART have helped in improving
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treatment of male factor infertility (35). Currently, ICSI
is the most common ART method, although it is
associated with the highest number of miscarriages.
One of the explanations can be the poor selection of
sperm that are possibly damaged by free radicals during
ART procedures.

ROS are produced during ART mainly by
oocytes, embryos, cumulus cells and immature
spermatozoa (59). Sperm preparation techniques can
be used to decrease ROS production to enhance and
maintain sperm quality after ejaculation (35). The most
common sperm preparation techniques used to
preserve and optimize sperm quality after ejaculation
is density gradient centrifugation, migration-
sedimentation, glass wool filtration, and conventional
swim-up (60). The first three preparation techniques
are more effective in reducing levels of free radicals
than the conventional swim-up technique (60).
However, repeated centrifugation causes mechanical
injury to spermatozoa and increases ROS production
(61). Currently use of antioxidants and other
substances to prevent ROS generation during sperm
preparation processes are under evaluation.

Aitken et al. reported that men with elevated
ROS levels in semen have a sevenfold reduction in
conception rates when compared with men having low
ROS (47). Also high ROS levels are associated with
decreased pregnancy rate following IVF or ICSI and
arrested embryo growth. Based on a recent meta-
analysis, which included all of the available evidence
from the literature, our group found that there is a
significant correlation between ROS levels in
spermatozoa and the fertilization rate after IVF
(estimated overall correlation 0.374, 95% CI 0.520 to
0.205) (62). Thus, measuring ROS levels in semen
specimens before IVF may be useful in predicting IVF
outcome and in counseling selected patients with male
factor or idiopathic infertility.

LABORATORY EVALUATION OF
OXIDATIVE STRESS IN INFERTILITY
PRACTICE

ROS Measurement
For clinical purposes, it is essential to have a

reliable and reproducible method of ROS

measurement. Numerous methods are available to
measure ROS levels in semen. Direct methods such
as electron-spin resonance spectroscopy, also known
as electron paramagnetic resonance, have been utilized
mainly for research purposes since these are relatively
expensive technologies that require fresh samples, and
great technical expertise (63,64). This method is used
to detect electromagnetic radiation being absorbed in
the microwave region by paramagnetic species that
are subjected to an external magnetic field. This
technique is the only analytical approach that permits
the direct detection of free radicals and reports on the
magnetic properties of unpaired electrons and their
molecular environment (64). However, short life span
of ROS makes the application of these techniques
difficult.

Indirect techniques, e.g., chemiluminescence
method are commonly used for measuring ROS
produced by spermatozoa (65,66). This assay
quantifies both intracellular and extracellular ROS
depending on the probe used. Chemiluminescence
determines the amount of ROS, not the level of the
sperm-damaging ROS present at any given time. Also,
it can differentiate between the production of
superoxide and hydrogen peroxide by spermatozoa
depending on which probe is used (66). Two probes
may be used with the chemiluminescence assay:
luminol and lucigenin. A luminol-mediated
chemiluminescence signal in spermatozoa occurs
when luminol oxidizes at the acrosomal level. Luminol
reacts with a variety of ROS and allows both
intracellular and extracellular ROS to be measured.
Lucigenin, however, yields a chemiluminescence that
is more specific for superoxide anions released
extracellularly (67,68).

The number of free radicals produced is
counted as photons per minute. Presence of
leukocytes as a confounding factor and the need of
fresh semen samples with high sperm count (>1 106/
mL) are the limitations of this technique (66). Also
other multiple factors that affect chemiluminescence
include the concentration of reactants, sample volume,
reagent injection, temperature control, instrument
sensitivity, and background luminescence (69).

A diversity of luminometers is available to
measure the light intensity resulting from the
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chemiluminescence reaction. Single/double tube
luminometers are sensitive and inexpensive but can
measure only one or two samples at a given time,
which are suitable for small research laboratories. On
the other hand multiple tube or plate luminometers are
more expensive since they can measure multiple
samples at the same time and are suitable for centers
that are engaged in regular research work on
chemiluminescence (66).

ROS-TAC Score
Since oxidative stress is caused by an

imbalance between levels of ROS produced and
antioxidant protection at any given time, it is a
conceivable that measurement of oxidative stress can
be made either by assessment of ROS or total
antioxidant capacity (TAC). The TAC is measured
by enhanced chemiluminescence assay or colorimetric
assay (10,70). Sharma et al. described a ROS-TAC
score for assessment of seminal oxidative stress that
showed to be superior to ROS or TAC alone in
discriminating fertile and infertile population (10). This
score minimizes the variability of the individual
parameters (ROS or TAC) of oxidative stress. The
ROS-TAC score was based on a group of normal
healthy fertile men who had very low levels of ROS.
Men with male factor or idiopathic infertility had
significantly lower seminal ROS-TAC scores
compared to normal controls, or the men with initial
male factor that eventually were able to initiate
pregnancy. The average ROS-TAC score for fertile
healthy men was 50 ± 10, which was significantly
higher (p ≤ 0.0002) compared to infertile patient (35.8
± 15). The probability of successful pregnancy is
estimated at < 10% for values of ROS-TAC < 30, but
increased as the ROS-TAC score increased.

Leukocyte Evaluation
Since lower leukocyte levels are sometimes

associated with significant ROS levels in semen it is
important to determine the exact source of ROS in
semen because the clinical implications of infiltrating
leukocytes are quite different from those of
pathological conditions in which spermatozoa
themselves are the source of ROS (36,45,71). Methods
that are currently used for assessment of seminal OS,

such as chemiluminescence assays, do not provide
information on the differential contribution of
spermatozoa and leukocytes to ROS production in
semen. Nitroblue tetrazolium test (NBT) can be used
for assessment of seminal oxidative stress, and the
differential contribution of cells to ROS generation,
and to determine the state of activation of seminal
leukocytes. ROS levels measured by
chemiluminescence assay are strongly correlated with
the results of NBT staining. Also, the NBT reduction
test is commonly available, easily performed,
inexpensive and has high sensitivity (72).

Oxidative Stress Status (OSS)
Currently there is no consensus regards to

the inclusion of ROS measurement as part of the
routine clinical evaluation of male infertility mainly
because there is a lack of standardization of ROS
analytical methods, equipment, and range of normal
levels of ROS in semen. Some investigators have
defined the basal levels of reactive oxygen species in
neat semen specimens of normal healthy donors
(45,73). Measurement of ROS levels in neat semen
after liquefaction in the presence of seminal antioxidant
protection proved to be a better test to evaluate
oxidative stress status. The ROS levels for fertile
donors with normal genital examination and normal
standard semen parameters were 1.5 x 104 cpm/20
million sperm/mL. Using this value as a cutoff, infertile
men can be classified as either OS-positive (> 1.5 x
104 cpm/20 million sperm/mL) or OS-negative (≤ 1.5
x 104 cpm/20 million sperm/mL), irrespective of their
clinical diagnosis or results of standard semen analysis
(73). Assessing ROS directly in neat semen showed
diagnostic and prognostic capabilities identical to those
obtained from ROS-TAC score (73).

Earlier studies have shown that sperm
washing procedures like multiple centrifugation,
resuspension, and vortexing artificially elevate ROS
levels (61,74,75). The antioxidant activity of seminal
plasma is removed during sperm washing steps, which
also results in elevated ROS levels (74). Excessive
washing and manipulation including duration of
centrifugation was found to be more important than
the force of centrifugation for ROS formation by
human spermatozoa (76). Therefore procedures that
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minimize multiple centrifugation, resuspension, and
vortexing should be used for the preparation of
spermatozoa for ART (61).

Conflicting studies make it difficult to establish
the clinical value of ROS measurement in medical
practice since there is no clear evidence whether high
ROS levels are a cause or an effect of abnormal
semen parameters and sperm damage (77). However,
a more recent study reported high levels of ROS as
an independent marker of male factor infertility,
irrespective of whether these patients have normal
or abnormal semen parameters (78). These findings
suggest that ROS measurement should be used as a
diagnostic tool in infertile men especially in cases of
idiopathic infertility and that the reference values of
ROS in neat semen can be used to define the
pathologic levels of ROS in infertile men and may
guide in better therapeutic interventions.

STRATEGIES TO REDUCE SEMINAL
OXIDATIVE STRESS

Given the major role of oxidative stress in
the pathogenesis of male infertility, treatment
strategies with the goal of reducing levels of seminal
oxidative stress are necessary for natural as well as
assisted reproductive technologies. Spermatozoa
produce small amounts of ROS that must be
continuously inactivated to keep only the necessary
amount to maintain normal physiologic cell function.
The pathologic levels of ROS detected in the semen
of infertile men are more likely caused by increased
ROS production than by reduced antioxidant
capacity of the seminal plasma (13). The body has
a number of mechanisms to minimize free radical
induced damage. Unfortunately, spermatozoa are
unable to repair the damage induced by oxidative
stress, because they lack the required cytoplasmic
enzyme systems to perform the repair (79).
Antioxidants are the most important defense
mechanisms against OS induced by free radicals.
Metal chelators and metal binding proteins that block
new ROS formation are classified as preventative
antioxidants. Scavenger antioxidants, such as
vitamins E and C, beta-carotene and other antioxidant

dietary supplements, glutathione and enzymes, act
via removing ROS already generated by cellular
oxidation.

Many clinical trials have demonstrated the
beneficial effect of antioxidants in treating selected
cases of male infertility (80-85), whereas others failed
to report the same benefits (86-88). Pregnancy, the
most relevant outcome parameter of fertility, was
reported in only a few of them (80,84,89-91). The
majority of the studies analyze multiple antioxidant
combinations, different dosages and durations. Also
the patient’s selection is another important aspect
because oxidative stress can not be considered the
cause of male infertility in all patients. Recently,
Agarwal et al. in an extensive review of literature
concluded that many studies suffer from the lack of
placebo-controlled, double-blind design, making the
effectiveness of antioxidant supplementation in infertile
patients still inconclusive (79).

Antioxidants may not be very effective
depending on the etiology of infertility (79). Primarily,
specific therapeutics directed against the etiological
causes of elevated ROS should be attempted. Once
the primary cause of infertility have been treated or
no specific etiology is identified (idiopathic infertility)
patients can be advised to take optimal doses of
antioxidants supplementation.

ORIGIN OF DNA DAMAGE IN
SPERMATOZOA

Sperm genetic material is structured in a
special manner that keeps the nuclear chromatin highly
stable and compact. The normal DNA structure is
capable of decondensation at appropriate time
transferring the packaged genetic information to the
egg without defects in the fertilization process. The
cause of DNA damage in sperm can be attributed to
various pathological conditions including cancer (92),
varicocele (93), high prolonged fever (94), advanced
age (95) or leukocytospermia (96). Also a variety of
environmental conditions can be involved as radiation
(97), air pollution, smoking (8), pesticides, chemicals,
heat and ART prep protocols (52,97,98). Most of these
agents not only disrupt hormone levels but may also
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Table 1 – Etiological factors associated with increased human sperm DNA damage.

Etiology

Pollutants

Varicocele

Leukocytospermia

Smoking

Advanced age

    Reference

De Rosa
 et al. 2003 (55)

Saleh
et al. 2003 (93)

Erenpreiss
et al. 2002 (96)

Alvarez
et al. 2002 (123)

Potts
 et al. 1999 (52)

Singh
et al. 2003 (95)

Moskovtsev
 et al. 2006 (124)

Trisini
et al. 2004 (125)

Study Population

85 men employed at
motorway tollgates
85 controls

31 infertile men
16 fertile controls

187 men

56 infertile patients
18 healthy fertile men

35 fertile smokers
35 fertile non-smokers

40 infertile men
26 healthy men

1125 infertile men

252 infertile men

  DNA  Assay

Acridine orange

SCSA

Acridine orange

SCSA

SCSA

Comet

Acridine orange

Comet

              Conclusion

Higher sperm DNA damage in
men exposure to pollutants.
Nuclear DNA damage was
inversely correlated with
methaemoglobin levels.

Infertile men with varicocele
showed significant higher
DNA damage that appears to
be related to high OS.

Normal semen has low DNA
integrity and resist to
leukocytospermia.
Leukocytes increasing
primary or provoking
potential DNA damage.

Significant increase in sperm
DNA damage in
leukocytospermic samples
compared to normal controls.

Higher sperm DNA damage in
smokers compared to non-
smokers.

Significant higher DNA
damage in men > 36 years
old.

DNA damage is significantly
higher in men over 40 years
old

Significant high DNA damage
in men older than 35 years.
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Etiology

Cancer

ROS

  Reference

Fossa
et al. 1997 (126)

Spermon
et al. 2006 (127)

O’Donovan
et al. 2005 (92)

Said
et al, 2005 (8)

Henkel
et al, 2005 (43)

Study Population

39 patients with
testicular cancer

18 healthy controls

22 patients with
testicular cancer
treated with cisplatin-
based chemotherapy

8 men with leukemia
12 men with testicular
cancer
3 men with lymphoma

28 infertile men

63 infertile men

DNA  Assay

SCSA

CMA3
TUNEL

Comet

TUNEL

TUNEL

            Conclusion

Sperm DNA damage is higher
in men with cancer even
before cancer therapy.

Recovery of spermatogenesis
is higher when normal SCSA
is found before adjuvant
treatment.

High sperm DNA damaged in
these patients. Improvement
in sperm chromatin
packaging after
chemotherapy.

Detrimental effect on
chromatin condensation and
DNA integrity of cancer and
as its treatment.

Increased ROS production
showed a positive correlation
with sperm DNA damage in a
time-dependent manner.

DNA fragmentation was
strongly positively correlated
with intrinsic ROS
production, whereas this
correlation was weaker for
extrinsic ROS production.

Table 1 – Etiological factors associated with increased human sperm DNA damage. (continued )

DFI = DNA fragmentation index, SCSA = sperm chromatin structure assay; ROS = reactive oxygen species; OS =
oxidative stress. TUNEL = terminal deoxynucleotidyl transferase-mediated 2‘-deoxyuridine 5‘-triphosphate (dUTP)-
nick end-labeling.

induce oxidative stress, which could damage sperm
DNA (99) (Table-1).

The extent of sperm DNA damage has been
closely associated with impaired sperm function as well
as male infertility (7). However the precise
mechanism(s) responsible for chromatin abnormalities
in human spermatozoa is/are most likely to be multi

factorial and are not accurately understood at this time
(100) (Figure-1). The most important theories proposed
as molecular mechanism of sperm DNA damage are:
(a) defective chromatin packaging, (b) reactive oxygen
species (ROS) (8,101,102), (c) apoptosis mainly during
spermatogenesis (7,103), and (d) DNA fragmentation
induced by endogenous endonucleases (104).
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ROLE OF OXIDATIVE STRESS IN SPERM
DNA DAMAGE AS RELATED TO MALE
INFERTILITY

Excessive generation of ROS in the
reproductive tract not only affect the fluidity of the
sperm plasma membrane, but also the integrity of
DNA in the sperm nucleus. DNA bases are
susceptible to oxidative damage resulting in base
modification, strand breaks, and chromatin cross-
linking. Oxidative stress-induced DNA damage
causes pro-mutagenic change, which in its most
severe form affects the quality of the germ line and
prevents fertilization. When there is less oxidative

damage, fertilization can occur, but the oocyte must
repair the DNA strand breaks before the initiation
of the first cleavage. Apoptosis and OS are involved
in mediating DNA damage in the germ line (105)
(Figure-2). The Y chromosome is particularly
vulnerable to DNA damage, due to its genetic
structure as well as it cannot correct double-stranded
DNA deletions.

Fertile healthy men with normal seminal
parameters almost consistently have low levels of
DNA breakage, whereas infertile men, in particular
those with abnormal seminal parameters, have higher
fraction of sperm DNA damage (106). Idiopathic
infertile men may present normal routine seminal

Figure 2 – Mechanistic pathway showing sperm DNA damage due to oxidative stress.
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parameters (concentration, motility, and morphology)
with abnormal DNA integrity (83,106,107). It is of
great concern that the most efficient ART techniques
used to treat male factor infertility with high degree
of sperm DNA damage. During ICSI, it is always
desirable to select spermatozoa with normal
morphology that reduces the risk of introducing
spermatozoa with strand breaks (108). This is
sometimes not always true since the traditional sperm
parameters such as sperm count, motility and
morphology have been proven to be poorly correlated
to DNA damage status (109,110). Moreover, this has
significant clinical implications because in vitro
fertilization using spermatozoa with damaged DNA
may lead to paternal transmission of defective genetic
material with adverse consequences for embryo
development. These findings suggest that an estimate
of the percentage of DNA damaged spermatozoa in
fertile and infertile men may be important and a future
challenge will be to develop methods to identify and
select spermatozoa with intact DNA during the IVF/
ICSI procedures.

Recently sperm from infertile men with
varicoceles have been associated with significantly
high levels of DNA damage (93). The finding of high
seminal OS in patients with varicoceles may indicate
that OS plays an important role in the pathogenesis of
sperm DNA damage in patients with this condition.
Although Zini et al. reported that varicocelectomy can
improve human sperm DNA integrity in infertile men
with clinical varicoceles (28), a limited number of
studies has examined potential treatments to reduce
sperm DNA damage. Therapeutic conditions have
been suggested that avoidance of gonadotoxins (52)
(smoking, mediations) and hyperthermia (94) (saunas,
hot tubes) may reduce sperm DNA damage.
Treatment of GU infection can also be helpful based
on the evidence that leukocytospermia induce ROS
production and possibly DNA damage (44). Studies
suggested that sperm DNA damage can be reduced
with oral antioxidants administered during a relatively
short time period (111). However, these
recommendations have been based on small,
uncontrolled studies and to date no treatment for
abnormal DNA integrity has been shown to have
successful clinical results (107).

ASSESSMENT OF SPERM CHROMATIN
INTEGRITY

Several techniques can measure DNA
defects in human spermatozoa and the ability of these
techniques to accurately estimate sperm DNA damage
depends on many technical and biological aspects.
However, to establish a threshold level between the
fertile population and the lowest sperm DNA integrity
required for achieving pregnancy remains extremely
challenging. Currently both direct (fragmentation,
oxidation) and indirect (sperm chromatin compaction)
methods are available to evaluate the integrity of
sperm DNA. Direct methods for detecting DNA
breaks include (a) the single-gel electrophoresis assay
(“Comet assay”) and (b) terminal deoxynucleotidyl
transferase-mediated 2`-deoxyuridine 5`-triphosphate
(dUTP)-nick end-labeling (TUNEL) assay (106,112).
Indirect methods mainly sperm chromatin integrity
assays (SCSA) for assessing DNA damage uses
chromatin and/or DNA intercalating dyes such as
acridine orange to differentiate single-stranded and
double-stranded DNA (106,109,110).

Less frequent clinical tests for DNA damage
include the sperm chromatin dispersion test (SCD)
using the Halosperm kit which allow to simultaneously
perform DNA fragmentation and chromosomal
analyses in the same sperm cell (113), liquid
chromatography that detect oxidized DNA nucleotide
residues (83) and evaluation of nuclear protein
(protamine/histone ratio) levels in sperm samples.

All methods currently lack a threshold, except
for the sperm chromatin structure assay (SCSA),
which assesses the ability of the DNA to resist
denaturation by acid or heat and uses DNA flow
cytometry approach. The sperm DNA damage is
expressed as the DNA fragmentation index (DFI)
(114) that can distinguish fertile and infertile population
in clinical practice (115).

DNA DAMAGE AND REPRODUCTIVE
OUTCOME

Sperm DNA damage is critical in the context
of success of assisted reproductive techniques
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(99,116). The main nuisance of ART is that they
bypass the natural defense barrier present throughout
female reproductive tract responsible for selecting the
best spermatozoa for oocyte fertilization. Normally
oocytes are capable of repairing partial DNA damage.
However, when the damage is severe, embryo death
and miscarriages are more likely to happen. Probably
that explains why miscarriage rate is higher after ICSI
compared to classic IVF (117).

Standard semen parameters do not identify
subtle defects in sperm chromatin architecture, which
after the advent of ICSI has become more important
parameter of sperm functional quality than count,
motility or morphology. The emphasis on evaluation
of genomic integrity has recently increased due to
reports that correlate the degree of DNA damage with
various fertility indices including rates of fertilization,
embryo cleavage, implantation, pregnancy and live
birth (118-120).

Sperm DNA integrity is an essential
requirement to achieve pregnancy in natural
conception (110) as well as for IVF outcomes where
the natural process of fertilization is circumvented
(121). A high degree of sperm DNA damage has been
found in couples presenting with unexplained recurrent
pregnancy loss (117). All male partners of couples
who achieved a pregnancy during the first 3 months
attempting to conceive had < 30% sperm with
fragmented DNA (109), whereas, 10% of the couples
who achieved pregnancy in months 4-12 and 20% of
couples who never achieved a pregnancy had > 30%
sperm with fragmented DNA. Moreover 84% of the
men who initiated pregnancy before 3 months had
sperm DNA damage levels of < 15%.

Bungum et al. reported that for IUI, there
was a significantly higher chance of pregnancy/
delivery in the group with DFI < 27% and HDS
(highly DNA stainable) of < 10% than in patients
with DFI > 27% and HDS > 10%. Although, no
statistical difference between the outcomes of IVF
versus ICSI was observed in the group with DFI <
27%, ICSI had significantly better results than those
of IVF in patients with DFI > 27%. The authors
concluded that combining the two SCSA parameters,
DFI and HDS is a useful method for prediction of
IUI outcomes.

Henkel et al. reported that even though sperm
DNA fragmentation did not correlate with the
fertilization and embryo fragmentation rates, patients
with a high percentage of TUNEL positive
spermatozoa (> 36.5%) showed a significantly lower
pregnancy rate compared to those patients with lower
than 35.5% TUNEL-positive sperm (118). The
decision to incorporate a new test into clinical practice
depends on the volume and quality of reports that favor
or refute such claims. Although multiple studies have
analyzed the relationship between the degree of DNA
damage and the fertilization rate, embryo cleavage
rate, implantation rate, pregnancy rate, and live birth
rate of offspring, existing data on the relationship
between abnormal DNA integrity and reproductive
outcomes are limited and not analyzed systematically
(122). The Practice Committee of the American
Society for Reproductive Medicine summarizes the
current understanding of the impact of abnormal sperm
DNA integrity on reproductive outcomes (107). This
Committee concluded that current methods for
evaluating sperm DNA integrity alone do not predict
pregnancy rates achieved with intercourse, IUI, or
IVF and ICSI.

Before sperm DNA damage analysis is
introduced routinely in clinical practice, studies with
adequate sample size must be conducted evaluating
outcomes and role of such tests in the management
of male infertility (122).

TAKE HOME MESSAGE

Limited amount of free radicals and oxidative
stress have an important role in modulating many
physiological functions in reproduction. ROS are being
constantly produced in small controlled amounts in the
reproductive tract and by a variety of semen
components. Many scavenging enzymes and
molecules (antioxidants) control the damaging effects
of ROS to keep the normal physiological balance.
However, when ROS production exceeds the
scavenging capacity of the antioxidants a state
referred to as oxidative stress is generated that
becomes toxic to sperm. High levels of ROS and OS
in reproductive tract and semen are associated with
sperm dysfunction and damage to sperm nuclear
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DNA. Although routine semen analysis remains the
backbone of evaluating male infertility, determining the
levels and sources of excessive ROS generation in
semen may be useful in developing future therapeutic
strategies for male infertility.

Current evidence suggests the use of systemic
antioxidants for the management of selective cases
of male infertility as well as in vitro supplements during
various sperm preparation techniques. However, a
definitive conclusion cannot be drawn from the
available studies, as oxidative stress is not the only
cause of male infertility.

Sperm DNA damage is more common in
infertile men and has been correlated with poor
reproductive outcomes. Although ART is able to
compensate for the impairment of sperm chromatin
integrity, transmission of abnormal genetic material
through ART needs further investigations in order to
reduce sperm DNA damage. Current methods for
evaluating sperm DNA integrity are not standardized
and are not routinely used in clinical laboratories. Also
to date no treatment for abnormal DNA integrity has
proven to be of clinical value.

A significant percentage of couples, even after
extensive infertility evaluation, show no apparent male
or female factor and are still unable to conceive.
Increased oxidative stress and DNA damage may be
responsible for the poor fertility in these patients.
Although assisted reproduction provides opportunity to
these couples with unexplained infertility, the potential
medical risks entailed by multiple-gestation pregnancies
and the associated costs are significant. It is important
to further decipher the molecular basis of male infertility
in order to thoroughly understand the effects of
abnormal spermatozoa on fertilization and embryo
development. With this understanding, the success of
ART and ICSI can be improved significantly.
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